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Physics Department, University of Michigan, Ann Artor, MI 48109, USA 

Received 23 April 1992 

AbstraeL The introduction of a set of intrinsic coordinates to give an explicit construction 
of the intrinsic states of vector-coherenl state theory has greatly simplified earlier attempu 
to generalize this theory to include operators lying outside the group algebra. Veq 
explicit vectorcoherent state constructions of such operators can now be given in terms 
of vectorcoupled combinations of intrinsic and collective operators. When organized 
into tensors which induce specific shifts in irreducible representations these lead to the 
reduced Wigner coefficients needed in practical calculations. The SO(5) 3 U(2) proton- 
neutron quasispin algebra is used as an example to give further simplifications of earlier 
resulu. All Wigner coefficients needed to give the n, T-dependence of matrix elemenu 
in the seniority scheme can now be given through a few terms expressed solely through 
angular momentum recoupling coefficients and the li-matrix elements of vectorcoherent 
state theory. 

1. Introduction 

Vector-coherent state (vcs) theory [14 ]  and its associated IC-matrix technique 
[1,2,7,8] are now well established as powerful tools for the evaluation of the matrix 
representations oC higher-rank Lie algebras and their non-compact generalizations. 
vcs theory gives a very explicit method for the construction of the irreducible 
representations of a full group algebra from the irreducible representations of a ‘core’ 
subalgebra by an inductive process [9], in the language of quantum theory by a vector- 
coupling process which couples the ‘intrinsic’ or ‘internal’ (or ‘spin’) states with the 
‘collective’ (or ‘orbital’) states whose excitations are realized in vcs theory in terms of 
polynomials in a set of complex Bargmann space variables, zi. Matrix elements of the 
group generators then follow directly from a knowledge of the subgroup recoupling 
(Racah) coefficients and the matrix elements of the intrinsic components of the 
generatom. The latter follow from a knowledge of the generator matrix elements 
of the core subalgebras. Like the electron-spin matrix elements, they do not require 
a knowledge of explicit ‘spin’ or ‘intrinsic’ or ‘internal’ degrees of freedom. In order 
to determine the full Wigner-Racah calculus of higher-rank algebras, recent interest 
in this field has focused on the problem of finding the vcs realizations of operators 
lying outside the group algebra. In a recent attempt to generalize vcs theory [lo-121, 
coherent state realizations of such operators have also been given in terms of a set of 
intrinsic operators which are vectorcoupled to collective r-space operators. In this 
method, the intrinsic operators are again defined through their actions on intrinsic 
states, that is through an evaluation of their matrix elements. Unlike the well known 
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matrix elements of an ‘intrinsic spin’ operator or an intrinsic generator of an arbitrary 
core subalgebra, the matrix elements of the intrinsic components of operators lying 
outside the group algebra are now much more complicated for two reasons: such 
intrinsic operators will connect an intrinsic state of an irreducible representation, w, 
to (i) intrinsic states belonging to different irreducible representations, U‘; and (5) 
a set of (collective x intrinsic) states, since the action of such an intrinsic operator 
on an intrinsic state can now induce collective excitations as well as a change in 
irreducible representation. Despite these difficulties, the intrinsic components of 
simple operators were defined through their non-zero reduced matrix elements in a 
number of examples. Many of the simple Wigner coefficients were evaluated by this 
method for the neutron-proton quasispin group [lo], SO(5) 3 U(2). for the Sp(6) 
3 U(3) branch of the fermion dynamical symmetry group [ l l ]  and the canonical 
subgroup branch of the unitary group [12], U(3) 3 U(2) x U(1). However, the 
generalized vcs method described in [lo-121 is quite cumbersome. 

A better method was recently proposed by LeBlanc [13] who was guided by the 
work of Bouwknegt et a1 [14] on two-dimensional conformal field theories. In this 
newest generalization of vcs theory, a set of intrinsic coordinates q j , j  = 1.. . . , e  = 
rank of the full group, is introduced. These q, are used to construct the highest 
(or lowest) weight components of the intrinsic state, the remaining intrinsic states 
being generated through a set of Bargmann variables for the core subalgebra. A 
very explicit construction can now be given for the intrinsic components of operators 
lying outside the group algebra through the intrinsic qj ,  their conjugates p j ,  and the 
subgroup Bargmann variables, zi, and their conjugate derivative operators. The vcs 
realization of an arbitrary operator can then be given by vector-coupled combinations 
of intrinsic and collective tensor operators. These are organized into operators of 
irreducible tensor rank for the full group with specific shift properties, that is they 
induce very definite shifts in the irreducible representation when acting on a generic 
state of arbitrary w. The matrix elements of these tensor operators, when suitably 
normalized, lead at once to the necmary reduced Wigner coefficients of the full 
group, where these are exprcssed entirely in terms of recoupling coefficients of the 
core subgroup and the IC-matrix elements of vcs theory. 

The new vcs method was applied to the standard canonical group chain U(n) 3 
U(n-l)xU(l)  in [13] (foran introduction, for thespecial case n = 3, see [IS]). Since 
the U(n) group chain is special, it may be instructive to apply the new generalization 
of vcs theory to another example. The simple rank-2 group SO(5) with its U(2) 
subgroup, as realized by the neutron-proton quasispin group of nuclear spectroscopy, 
is ideal for this purpose since its subgroup recoupling coefficients are readily available. 
The earlier generalization of V c s  theory has already achieved the desired result for 
some of the simplest SO(5) 3 U(2) reduced Wigner coefficients [lo]. That is, these 
have been expressd very simply in terms of SU(2) recoupling coefficients and the I<- 
matrix elements of SO(5). For some more challenging Wigner coefficients, however, 
the expressions in [lo] involve some intermediate state sums. The power of the new 
technique can, therefore, be used to achieve further simplifications and leads to a 
truly viable Wigner-Racah calculus for the neutron-proton quasispin group. 

In an alternate approach, A Klein has recently called attention to the connection 
between the quantized Bogoliubov transformation [16,17] and the problem of 
constructing the vcs realizations of operators lying outside the group algebra. The 
SO(5) neutron-proton quasispin algebra, or its isomorphic Sp(4) algebra, was used 
by Klein et a1 [IS] to explore this connection through a bosonquasifermion mapping 
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[19,20] of the neutron-proton shell model algebra. It is interesting to note that the 
quasifermion creation and annihilation operators of this approach share some of the 
properties of the isospin-4,operators which can be used as the basic building blocks 
for the intrinsic operators m the new generalization of the vcs method 12.11. 

2. The new vcs realization of the neutron-proton quasispin algebra 

The generators of the SO(5) algebra can be split into 

operators of the single j-shell, 
(i) a set of three commuting raising generators, the J = 0, T = 1 pair creation 

where are single-nucleon creation operators 
(ii) a set of conjugate lowering operators 

4 h . l ~ )  = (At(MT)It (1b) 

(iii) the generators of the SU(Z)xU(I) core subalgebra made up of the isospin 
generators T and the number operator 

with standard Cartan SO(5) operators 

HI = i N O p  - R H, = Tu. ( Id)  

A generalization to multi-j shell configurations merely requires the inclusion of a j- 
sum in all summations and a replacement of R = (j + $) by the full pair-degeneracy 
number. 

In the vcs formalism state vectors are mapped onto their r-space functional 
realization 

I+) - +,(.) = (wlez'Al+) (% 

with 
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where we have used the standard spherical tensor form for the pair annihilation 
operators, 

AM, (-l)l-MTA(-MT). ( 3 4  

Note also that it is the z h  which transform as standard spherical tensors of rank 1, 
spherical component M ,  whereas the zM are related to standard spherical tensors 
zl,M via 

(3) 1-Mz 
z l , M = ( - l )  -M 

so that in terms of the Cartesian q ,  z2, z3 

(W 
1 

Zl,kl = zFl = k-(zl ?C iz2) Zl,u = -zu = -z3.  Jz 
In equation (k), lw), the so-called intrinsic state, is a state of an irreducible 
representation of the U(2) core subgroup 

lw) In = v;t m,) (4) 

with nucleon number = seniority number, n = v; and with isospin = reduced isospin, 
given by t. Note that lw) is a (2t  t 1)-dimensional vector which is annihilated by the 
J = 0, T = 1 pair annihilation operators, AILIT. 

In vcs theory operators, 0, are mapped into their r-space realizations, r (O),  
via 

Ol+) + r(o)+,,,(%) = (wlez'Aol+) = (w~(e"'Aoe-z.A)ez'AI+) 

= ( w ( { O t  [ ~ . A , O ] t ~ [ z . A , [ r . A , 0 ] ] + . . . ) e " " l ~ )  (5) 

where the r(0) for the generators are given in Cartesian form through equations 
(9) in [lo]. For present purposes, it may be useful to give the needed commutators 
in standard spherical tensor form 

[ A + i , T i I  = -A" [A+,> Tu1 = - 4 1  [At17Tt,l= 0 

[A", T I ]  = [A", 5701 = 0 [A",Ttll = At1 

[A-i,T-l] = 0 [A- , ,  Tu1 = A-I [A-I,Ttll = A, 

[T-l,T-lI = 0 [T-l,TUI = T-1 [T-I>T,Il =Tu 

(64 

and, with ALT At(hf,), 

[ A t , ,  4 1 1  = 0 [ A t , ,  41 = Ttl [A+t,A!il=To-Hi 

[A,, All1 = -Tt1 [A", A61 = HI [A", A!,] = TI 
(66) 

[ A - i , A i J  = -Tu - HI [A-l, A!,] = 0 
t [T-i,A:ll Af, [T-I, Af] = A-,  [T-i,A-il = O .  

[A-l,Af,I = -?'-I 
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The SO(5) basis vectors of ordinary Hilbert space are mapped into the vector- 
coupled coherent state basis 

I ( w l u Z ) n i T M T )  I v ,  PLTp x t ] T M T )  (7) 

where (w1w2) = (Q - fv,t) are the SO(5) irrep labels, n is the nucleon number 
given by n = v + 2p, with p = number of J = 0, T = 1 coupled nucleon pairs which 
are combined with the v-nucleon configuration entirely free of such pairs. The vcs 
basis vectors are given by 

where Z ( p " ) ( r )  is a z-space solid harmonic of degree p (see equation (U) in [lo]), 
with isospin Tp = p, p - 2, . . ., 0 (or l), the isospin of the p symmetrically coupled 
J = 0, T = 1 pairs. In equation ( S ) ,  the square 
bracket denotes the vector-coupling (in a right-to-left coupling order convention) of 
the intrinsic t with the collective Tp to resultant total isospin T. The label, i, in 
equation (7) stands for the fourth quantum number of SO(5). In vcs theory, it is 
given naturally through the unitarkation K-matrix; see, in particular, equations (22)- 
(24) and appendix A in [lo]. This IC-matrix also converts the reduced matrix element 
of an arbitrary operator of spherical tensor rank T to the vcs matrix elements in the 
simple vector-coupled basis of equation (8) through 

( (w;u; )n ' i 'T ' l lOr[[(wlu~)~iT)  

(Note that $2 E 

= ( IC-~)~ ,~ ; (~ ' ,P ' [T;  x ~ ' I T ~ I I ~ ( ~ ) ~ I I ~ , P [ T ,  x t]T)(IC)T,i. (9) 

In the new generalization of vcs theory, a seemingly backward step is made 
first. The core subalgebra of vcs theory is replaced by the simpler Cartan 
subalgebra H,, H,; and the (2t  + 1)-dimensional intrinsic state Iv ; tm, )  is replaced 
by the one-dimensional lowest-weight (LW) state Iu;tm, = -t). The vcs factor 
( z  . A) must then also be replaced by a new vcs factor involving all the lowering 
operators of the full Cartan lowering type with a new set of (primed) Vcs variables 

T;.Tp 

z', (2+1,zL,&,C'); 

t 1  t 1  
% . A =  z M A , - - z ' . E = C z L , E - , =  (&AM)+C'T-l (10) 

M=-I  D M = - 1  

where the lowering operators E-a, with roots --a = -(el - ez),-el,-(el + e2), 
and -e2, are A,,, A,, A w l ,  and T1, respectively. Note that the primed vcs variable 
associated with the SU(2) subgroup operator T-l is named C'; i.e. +Le, E C'. This 
apparent retrogression in the new approach leads to a more complicated form of the 
v a  realizations r"(0) for the generators since the lowering operator T-, does not 
commute with the full set of lowering operators, A,. It is useful to write in 
both a right and left subgroup form by making repeated use of the Campbell-Baker- 
Hausdorff relation 

(11) eAeB = , {AtB+ ~ ~ A ~ ~ l t h ~ ~ ~ ~ ~ A , B l l t ~ B . ~ B . A l 1 ~ t ~ ~ ~ ~  
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to yield 

and 

These lead to 

and 

Equations (14) lead at once to the vcs realizations of the lowering operators. For 
example 

The remaining generators follow from the commutator expansion of equation (5) 
including triple and quadruple Commutators, together with equations (15); leading, 
e.g., to 
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Note the entanglement between the collective ZL and the subgroup operator, C'. 
The collective and intrinsic variables can be disentangled to lead to the original 
vcs realization for the generators, see equations (9) in [lo], via the nonlinear 
transformation to new z M ,  <, 

In addition, it is possible to introduce a set of intrinsic coordinates q l ,  q,, with a set 
of canonically conjugate pl, p,, 

[pj,~kl = -i$k. (19) 

The lowest-weight (LW) state can then be written explicitly in terms of the qj 

10) (20) lLf l  = l v ;  t ,  - -1) = e - i ~ ~ q l - i w z q z  
t -  

with w2 = t, and with an intrinsic space inner product defined such that ( L a @  = 1. 
The intrinsic qj: pi can therefore be viewed as internal angle-action variables defined 
over the angle interval 0 to 1. Note also that p j  ILW) = -wj ILW). 

The intrinsic state construction of the full (2t + 1)dimensional intrinsic space 
now proceeds via the SU(2) coherent state construction 

(214  Ch 

JF! Iv; t ,  m, = - t  + k )  = -1~y.) 

with an SU(2) unitarization K-operator which collapses to a simple onedimensional 
normalization factor 

Kk = J- ( Z t ) !  
(2 t  - k)!2k  

with k = 0, . . ., 21 for m, = - t ,  . . . ,ft. 
With the shorthand notation (in the new variables) 

which is the spherical tensor analogue of the Cartesian form in [lo]. (Note 
that the al,M are standard spherical tensors of rank 1, spherical component M; 
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whereas the zM are related to the spherical tensors Z l , M  via equations (3); so that 
(Z . a) = +&[Z, x all: whereas ( x  . x )  = -&[Z, x Z,]:. The square bracket 
will denote vector-coupling in a right-to-left coupling order convention throughout.) 
The U(2) subgroup generators are written as sums of purely intrinsic and purely 
collective operators. Now, however, the intrinsic components of these generators can 
be given in very specific form in terms of a set of intrinsic operators (to be written 
in calligraphic letters) 

All operators, including those lying outside the group algebra, can now be defined in 
terms of a set of intrinsic operators constructed from the intrinsic 

417 42 PI9PZ c>a, 

z+I ,+ ,  z-I a,,, %,a-,. 

and a set of collective operators constructed through the collective 

Moreover, if these are expressed in terms of vector-coupled combinations of the form 

[( Y Y x ,  a ) ) ,  x (Ti"*,( 4; 3 Pi 1 c 18, ))&, 

their matrix elements can be expressed in terms of standard recoupling coefficients 
in the vector-couplcd basis of equation (8). 

3. Irreducible shift tensors 

The aim of the new vcs method is to organize operators outside the group algebra 
not only into sets of irreducible tensor operators with definite weights but into sets 
of irreducible tensor operators which induce very definite shifts in the irreducible 
representation when acting on a generic state of arbitrary SO(5) irrep (U,, w 2 )  = 
(CL- ;U, i).  The single-nucleon creation and annihilation operators serve as a simplest 
example. With fixed jm ,  the four operators a; mm,=f ;, ' * ( - l )J-mQj, -m,m,=Tk,  

span the four-dimensional irrep (4;) of Sop), with weight points ti,&$; and 
-f & j, respectively. That is, these operators shift the weights H , ,  Hz  by +$,hi ;  
or - 5  i f when acting on generic states of arbitrary weights. Each one of these 
will induce shifts in the irrep (w1,w2) 3 ( w ; , ~ ; )  = (w,  t A l , w z  + A2) ,  with 
A l a z  = +f  + 4, ti - 5 ,  -4  + ;, - 5  - 5 when acting on generic states of 
(wlr U,); i.e. the shifts range over the same set of numbers as the weights. A nucleon 
creation (or annihilation) operator will, in general, induce all four of these shifts, 
whereas an irreducible shift tensor is to select one specific shift, A l a 2 ,  out of the 
four possibilities. Operators will thus be labelled by their irreducible tensor rank, 
( A , & ) ,  by their shift, &,A,, and by their subgroup labels, h,; rh,  m,, so that 
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It will be assumed that the irreps (A,,!,) are simple enough so that the SU(Z)xU(l) 
subgroup labels h,; rm,  are sufficient to label the tensors. This would be true, for 
example, for the irreps (+~),($~),(10),(11),(20),(21),(22), of greatest interest in 
nuclear spectroscopy. Irreps, such as (5 i), (ll),  (20), (21), (22), with multiple weight 
points will lead to multiple solutions for the shift tensors of the corresponding Ala,, 
which will require additional upper-index shift labels. 

To construct the shift tensors of definite A l a z  , it will be usful to introduce a 
set of ‘screening charges’, (the language comes from the field theory applications in 
1141). For these we need the left vcs realizations for the Cartan lowering operators, 
r,,,( E-,). Recall that 

r l e d  E-a., 1 !Nd) = (4 (-Reo I4 (27) 

After transformation from the zLa z h , c ’  to z,,C via equations (18), these are 

rlert(A-1) = -8-1 

rleft(A,) = --(a” - fa-,) 
rlert(Atl) = -(atl - fa, + Ya-,). 

r~t(T-11 = -a<, 
(28) 

Note that the minus sign in the defining equation (27) is needed to preserve the 
generator commutation relations among the I?,,,( E-,). The screening charge for 
the root a is now defined by 

S, = ei(P‘*)rle,t( E-=) (294 

that is 

= -ei(91-92)(a+l - ca,+ fcza-,) 

C ’  = -eKn+qz)a S = -e’92i3 

s e, = -ei91(aU- <a-l) 

e2 

Note, that the commutator [Sa,, Sa>] = 0 if a1 + is not a root, and that 

[Se,, = se, [S,,,Se,1 = Se,+e2. (30) 

The screening charges have the following properties. The screening charge for 
a = vlel + uze, in its left action on an intrinsic state (w1w2) not only shifts the 
intrinsic state to ( w l  + uI,w2 + U,) but also leaves the subgroup labels H,TM, 
invariant since S, is a U(2) subgroup scalar. The construction of the irreducible shift 
tensors T(AlA2)f;,$m, now proceeds in three steps. 

Step 1 .  Construction of the maximal-weight, maximal-shift tensor. 
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Step 2. Construction of the maximal-weight, lesser-shift tensors through the use of 
screening charges. 

Skp 3. Construction of arbitrary-weight, spedic-shift tensors by repeated application 
of commutator-taking with the raising generators T(AL).  

In step 1, it is most natural to choose the LW, as the maximal-weight, since our 
irreps are induced from states with the minimum number of particles, n = U ,  and 
mt = -t. The maximal-shift Lw tensor follows from our state construction in t e r m  
of specific intrinsic q l ,  q,, 

(31) T(A,A,)?$ = e - i h ' I t - i b z .  

The LW tensors of arbitrary shift, A l a , ,  are then built through the screening charges 
from linear combinations of the form 

n: S(IW (32) e - i X t q L - i X m  

i 

where, with a(i)  = v!i)e,  + vt)e,, 4, = A, - x i  "$'),A, = A, - xi VI'). 
by [13,14l 

The basic relation which is used to construct the Lw lesser-shift tensors is given 

~ [ ( ~ ( w ' . o ) / ( a . p ) ) t l l ~ ( ~  (I I 2)LW A A  - - T(  ~ , ~ , ) ~ ~ ~ ~ l ( ~ ( ~ . ~ ) / ( ~ . ~ ) ) t ~ l  0 (33) 

where a is one of the simple roots, el - ez or e,; (wlw;)  = ( w ,  + A l , w z  + A,); 
and A;A; is obtained from AIA, by a Weyl reflection in the plane normal to a; 
i.e. for a = e2 : A;A; = A,, -A2; while for a = el - e, : A;A; = A,A,. 

Step 3 in the shift-operator construction procedure is achieved by repeated 
application of the commutator relation 

[ r (AL)?  T(~IA,):$~,l 

= ~ ~ ( ~ l ~ , ) ~ ~ ~ ~ ; ~ ~ ; , , , , t M ( ( X , X , ) h , + l ,  r", + ~ I A L I ( ~ I ~ Z ) h l ~ ~ , )  
7' 

(34) 

where the matrix elements of the generators are known from the vcs construction. 
It should perhaps be emphasizcd that these T(AIAz)$;, are the vcs realizations 
of the shift tensors; i.e. they are r( 2'). For simplicity of notation, we shall dispense 
with the symbol r. 

4. The fundamental SO(5) spinors 

The shift-tensor construction process will be illustrated first with the simplest 
irreducible tensors, T(  1 i), spanned by the single-nucleon creation and annihilation 
operators with m, = rtf .  The LW shift tensor with A l a 2  = +f ,+$  is given by 
equation (31). The LW shift tensor with A l a 2  = ti,-; is obtained from this 
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maximal shift tensor by a simple Weyl reflection in the plane normal to e2 by an 
application of equation (33) with CI = e,. A second reflection, now in the plane 
normal to el - e2, gives the LW shift tensor with A l a 2  = -!,+;, while a final 
reflection in the plane normal to e2 gives the LW tensor with A l a 2  = -:, -;, where 
the application of equation (33) requires repeated use of the commutator relations 
of equation (30). The results are 

T ( 1 i ) L w  

T ( 5 2 ) L W  c 
T ( l i ) L c w  1 1 - ? I + !  = e+iql/z-'qz/2{(a t 1  - ca, + ;c2a-,)a, + (a, - ~ a - , ) ( p ,  - p2  - I)}  

{(at1 - Ca" + fc'a-,,af T ( 5 i ) L w  
+ (8" - ca-,)a((P, - P2 - 2) - a - l P z ( 2 P l  - 311. (35) 

I 1 t i , + !  = e-iq1/2-iqz/2 

11 +!*-f = e-i9t/2ti9z/~a 

$ 1  
1 I - i i - z  = etiqr/Ztiq2/2 

The simplest shift tensors are those with A, = +$. For these the full set of tensors, 
(all weights as obtained through equation (34)), can be expressed in terms of two 
intrinsic spinors A and E 

(36) 

(37) 

T ( l l ) + i , + :  - e-igt/ZA 1 I +i+ i  = e-iqz/z&[Z, A ; ] ~ ,  i 
2 2 - 1 . 1  z.2m: - mr %i)tt::m, 

T ( I ; ) + & ? - ~  = e - i ~ t / 2 5  T ( L I ) + ~ , - ~  1 ,  = e-iql/Z&[Zl E;]- ,  

c A-; = e-'qzf2 (38) 

3 
2 2  - : : : m t  mc 2 2  t!;tme 

where the purely intrinsic spin-; operators A and E are given by 

A+; = - 1 e-iqz/z 

fi 
(39) 8- = etinz/za E+; = Jze+iq2/2(p, + fca,) Z (. 

[At x E:]h = [O; x A;]:, = IM 

We note also that 

(40) 

that is the intrinsic isos in operator 7 is obtained through a vector-coupling of the two 

been put in a form which has achieved our basic aim. They are expressed through 
vector-coupled sinzple collective and intrinsic operators. In this case the collective 
operator is Z1,*{ and the intrinsic operators are given as very simple functions of the 
intrinsic operators q l ,  q 2 , p 2 ,  c, a,. The full matrix element of a shift operator is thus 
reduced to an exercise in vector coupling. For example 

basic intrinsic isospin-5 P tensors. The shift operators in equations (36) and (37) have 
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with a similar relation for the A,Az = ti,-;, shfit tensor. The reduced matrix 
elements of the intrinsic A and 5 follow at once from the deEnition of the intrinsic 
operators and the explicit construction of the intrinsic states through equations (214 
b). These lead to 

In equations (41), the [ ]-coefficient is the unitary form of the standard 9 j  coefficient. 
The reduced matrix element of the collective 2, is given through an SU(3) 3 SO(3) 
Wigner coefficient by equation (19) in [lo]; see also table 2 in [lo]. When properly 
normalized, the reduced matrix elements of the shift tensors lead at once to the 
SO(5) 3 U(2) reduced Wigner coefficients. If these normalized or unit shift tensors 
are designated with the subscript, U, they must satisfy 

((9 + A l , W 2  t A , ) ~ w l l ~ " ( ~ , ~ , ) ~ ~ ; ~ I I ( ~ , w , ) ~ , p . ~ ) 2  = 1. (43) 
h l r  HliT 

Here, the reduced matrix element is to be taken in ordinary Hilbert space, so that 
equation (9) must be used together with a relation such as equation (41). For the 
T(i&)A1*2 tensors with A, = t:, the purely intrinsic states of the left-hand side of 
equation (43) can be connected only to purely intrinsic states on the right-hand side 
via the purely intrinsic operators with h,  = -4 in equations (36), (37). In this case, 
therefore, the Tu are obtained from the T by division by the intrinsic reduced matrix 
elements of equations (42). This then leads to the SO(5) 3 U(2) Wigner coefficients 
in the form given in table 4 in [lo]. 

The more complicated shift tensors with A, = -4 can also be expressed in terms 
of vector-coupled collective and intrinsic operators, where the intrinsic operators now 
include pieces built by vector-coupling d or 5 with 7. In this form the shift tensors 
with LW components are 

The matrix elements now lead to two terms of the form of equation (41). (The 
necessary reduced matrix elements of a, and intrinsic operators such as [A x TI4 
or [5 x T ] f  are given in section 5.) Some simplification can be achieved by a 
generalization of the Philadelphia-Toronto trick [21] whereby these can be reduced 
to  matrix elements of operators [a, x A ; ] ;  or [a, x 5;]4. For example 
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where 

11' OP = - ( 7 i n t r .  . ~ e ~ l l . ) -  $ ( p l l .  , p l l . ) _ ( 7 i n t r .  . 7 i n t r .  ) t ( Z . B ) ( P , - g + $ ( z . B ) )  

(47) 

is an operator which is a subgroup scalar with simple eigenvalues. For the higher- 
weight components this process becomes more of a challenge since these operators 
consist of an even larger number of terms. For example 

(48) 

leading to matrix elements with five terms of the form of equation (41). Such 
complicated terms can be avoided by an even simpler trick, however. Reduced matrix 
elements of unit shift tensors with A, = -f follow from those with A, = +$ by a 
1-3 interchange symmetry property of the SO(5) 3 U(2) reduced Wigner coefficient. 
This symmetry propery was used to give the expressions in table 4 in [lo] for the 
shifts with A, = -1. 

5. The (10) and (11) tensors 

Irreducible tensor operators transforming according to the five-dimensional irre- 
ducible represention, (lo), are needed to evaluate the matrix elements of pair creation 
and annihilation operators and multipole operators coupled to odd J-values (see ta- 
ble l in [lo]). The Lw shift tensors with A l a z  = 0,$1,0,-l, and -1,0 follow from 
the maximal shift tensor with A l a z  = +1,0 by Weyl reflections in the planes normal 
to el - e,, e2, and again el - e2 by an application of equation (33), while the fifth 
shift tensor with A,A, = 0,O is based on equation (32). The results are 

q10)+1J - e-ipt (49) L W  - 

T(lO)U;+,' = (a.[Ab x A : ] ' )  (50) 

T( 1O)YW = ( a  ' 7) (51) 

(52) 
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The fifth shift tensor with A l a 2  = 0,O has been built by a linear combination of the 
form (see equation (32)) 

where the operator function, $(pl, p z ) ) ,  follows from equation (33). With a = el-ez 
and eZ this leads to the relations 

{S.,S e,-= 2 IC4 = 0 (544 w,--W*tI w1 - w 2 t  1 ( 4 -  (a, - a 2  + 1)) - %,4S et-ez 

{s,,s:yf'(zw, + 1 + 4 )  + Selte2S:y(2W2 + 1)(% + 4) - s.,4s:y+'}lLw) = 0 

(546) 

where we can use ~ (p , , p2 )SW1-WZf '  =,-e2 = se,-,, w l - W z t l  + ( P I  + a, - w2 + 1, P2 -a1 + a 2  - 1) 
and 4 ( p l , p , ) S ~ ~ t 1  = Szw2t'+(pl,pz ez + h, + I) ,  so that equations ( S k ,  b) are 
both satisfied by 

d ( P 1 9 P 2 )  = P2. (544 

This leads to the LW shift tensor of equation (Sl), where an overall change of phase 
has been made to bring this operator into line with the phase conventions of the 
shift operators of equations (SO) and (52) with A l a z  = 0 , H .  We note again that 
the most complicated shift tensor is that with A, = -1. Since the SO(5) 2 U(2) 
Wigner coefficients for the shirt A l a 2  = -1,0 can be obtained from those for 
the shift A l a 2  = +1,0 via the 1-3 interchange symmetry properly of the Wigner 
coefficients, it will be sufficient to consider only the shift tensors with A, = +1 and 
0 in detail. The construction of arbitrary-weight shift tensors follows from repeated 
application of equation (34). For the simple (10) tensors, the necessary commutators 
can be carried out directly. For more complicated tensors, it may also be useful to 
put the required commutator relation into more general form in terms of the coupled 
commutator relation 

X 
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The full set of necessary shift temors T( 10)f,'tkF are 

with intrinsic operators 

T,(E)ins. - - [Ai x Ai]!,, 1,m = T , m  =[ai xB:]!,, (574 

and functions 

T(0)inu. T(-l) inV.  

f(+l)(PI,P,) = (PI - P z )  f(U)(Pl,P2) = (PI - 1) 
f(-')(P1,Pz) = (PI + P2 - 1). (574 

In equation (57b). an operator Zl,,(a . T(A2)i0w.) has been recoupled to put it 
into the desired form involving purely collective operators vector coupled with purely 
intrinsic operators, thus leading to the 7-sum. 

The necessary intrinsic-space reduced matrix elements are 

The collective-space reduced matrix elements follow from equation (19) in [lo] and 
from 



where the necessaly SU(3) 2 SO(3) Wigner coefficents are given by table 2 in [lo] 
and by 

With these reduced matrix elements the full matrix elements of the operators 
(56)-(57) can be evaluated by standard vector-coupling formulae and by the final 
application of equation (9). To convert these matrix elements into the required 
SO(5) 3 U(2) Wigner coefficients, the shift tensors of equations (56), (57) must still 
be converted to unit tensors, Tu, as defined by equation (43). It will be convenient 
to label the necessary normalization factors by the double-caret double-bar notation 
introduced in [13] and [15]: 

(( w;w;) Hli' T'I IT( A, A,)$? I I( w p , )  H, i T) 
= ( (wiw;)  H~i'T'~~T~( A 1 A 2 ) $ ~ ~ ~ ( w 1 w z )  H,iT) 

x U ~ i 4 I l T ( A l  A,)A'A~li(w*wz))) 
= ( (wlwz)  H, iT;  ( A ,  AZ)hl7ll( w;w;)H;i'T') 

x ( K w ; 4 )  I IT( A1 A, ) A ' A z  I I(WIW2))). (67) 

Note that the SO(5) 3 U(2) reduced Wigner coelficient is the reduced matrix element 
of the unir shift tensor, Tu. Since the double-caret double-bar factors can be obtained 
from the action of the shift tensors on the LW state, they are relatively easy to 
obtain. Note, however, that the operators (57) when acting on LW states of (w iw; )  
can convert these to first collective excitations of the representations (wIwz). The 
necessary A'-factors can be read from equation (27) in [lo], but are given again here 
for convenience 

(ri2(1(Wlt)T)),1 = w1- t for T = t +  1 

W l t 1  for T = t (68) 
w , t t + l  for T = t - 1. 
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Note that these are the LW eigenvalues of the functions -f(*2)(p1,p2) of equation 
(57e). With these the normalization factors for the (10) tensors can be calculated. 
They are 

(Kw1 + ~ ~ ~ ~ 1 1 ~ ~ ~ ~ ~ + 1 ~ " 1 1 ~ ~ 1 ~ ~ ~ ~  = 1 (69) 

(((w,,t - l ~ l l T ~ l o ) " ~ - ~ l ~ ( w , t ) ) )  = t . \ / (w, + t + l)(w, + 1 + 2)(2t - 1)(2t+ 1) .  

(704 

Equations (56), (58) and (69) lead at once to the Wigner coefficients for the shift 
A l a z  = +1,0 in the form given by table 5 (case 1) of [lo]. Similarly, the (10)-tensors 
with h,; T = -l;O for shifts A l a 2  = OA, give the first e n y  of case 2 of table 5 in 
[lo]. The remaining enaies in this table were given through a simple intermediate 
state sum. Through the present form of the shift tensors these can now be put into 
an even simpler form. Again, defining the SO(5) 3 U(2) reduced Wigner coefficients 
through the F-factor introduced in [lo] 

(( w1 t ) HI iT; ( wIw2 )h, r I ] (  wit') Hi? 7") 

we obtain the SO(5) 3 U(2) Wigner coefficients for (X,X,) = (10) (wi f ' )  = 
(w,, t + A )  through the F-factors given in table 1. 

Table 1. F-hclon for Ihe coupling ( w i t )  x (10) -. (wi t ' )  = ( w i ,  t + Az). 
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Irreducible tensor operators transforming according to the tendimensional 
irreducible representation, (l l) ,  are needed to evaluate the matrix elements of pair 
creation and annihilation operators and multipole operators coupled to even J -  
values (with J $ 0). It will again be sufficient to calculate operators for shifts 
A l a z  = +1,$1; t 1 , O ;  +l,-1; 0,+1; and 0,O; and use symmetry properties for 
the remainder. There are now two independent shift operators with A l a z  = 0,O 
since the weight point 0,O is a double weight point. The necessary LW shift tensors 
are (except for the A,A, = 0,O tensors which will be treated later) 

The simplest shift tensors are those with A, = +1. The full set of shift tensors with 
A, = t 1  are 

~ ( 1 l ) Z W z  - e - i q , T ( A z ) ~ n ~ ~ .  (7%) 

(7%) 

(7%) 

1;ln - I,m 

T(H)$$ = Jze-i91[z, x T~ (A2)intr. I, 1 

~(ii);:$~ = &e-'9qz1 x T, (A2)intr. 1" U 

where the purely intrinsic operators, are again given by equation (57d). 
The quadratic r-space functions of equation (73d) are expressed in terms of the 
normalized z-space solid harmonics of equation (8) (see equation (15) in [lo] for 
their full definition). Note also that 

(74) (2.2) = &z$n";u = -&[Z, x z,]: 

(((q t 1,t + A2)11T(11)tL~Azll(wl~))) = ((w, t 1 , t  t A2)11e-i91T,( A )ins. I [(w, d ) )  . 

JZZ,, (W - - [Z ,  x Z,]Z,. 

The unit shift tensors with A, = + 1  are related to the above by the reduced 
matrix elements of the purely intrinsic operators; i.e. 

(75) 

Equations (73) and (75) thus lead at once to the SO(5) 3 U(2) Wigner coefficients 
in the form given in table 6(0) (case 1) in [lo]. (Note, however, there is a phase 
error in the last ently of this table the numerical factor -1/2& should be replaced 
by t 1/2&.) 

The shift tensors with A l a 2  = 0,+1 are somewhat more complicated. With 
intrinsic tensors defined by 

T ( + l ) i m  
2,m = [[Ah x A$ x 7112, (76) T,(,:)iotr. - - [dl x A;]:  
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they can be put in the form 
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for Ti = Tp + 3 

- 2Tp(Tp- 1)(T,-2)(p+TP t l ) ( p - T p + 2 ) ( p - T p + 4 )  
P(P + l ) ( p +  4)(2Tp - 1)(2Tp - 3)(2Tp - 5 )  

for 7'; = Tp - 3 

for 7'; = Tp + 1 

for Ti = Tp - 1. (W 
Equations (62)-(66) give the remaining necessary collective-space reduced matrix 
elements. The necessary intrinsic-space reduced matrix elements are given by equation 
(59) and by 

( ( w l , f +  1)II[[At x Agl' x 111211(wi~)) = ~/$t(f +2) .  (81) 

In this case the doublecaret double-bar normalization factor has the value 

(((w1,f t ~ ~ l l ~ ~ l l ~ " ~ + ~ l l ~ ~ , ~ ~ ~ ~  = J h l  - tNw1- t + l ) ( W I  t l)(Wl t 2). (82) 

With the definition of equation (71) the SO(5) 3 U(2) Wigner coefficients for 
the coupling (wit)  x (11) + (wl ,  t + 1) are then given in their most economical 
form by the F-factors of table 2. The Wigner coefficients for the coupling 
(wit) x (11) - (w, ,  f - 1) can be obtained from these through the 1 - 3 exchange 
symmetiy property. Alternatively they can be obtained from shift temors T( ll)',-' 
which follow from equations (77) if we make the replacements [A ;  x A;]!,, - 
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[Bn X L3$,,; ( P I  - PZ) - ( p l  + p, - 1); ( p ,  - 1) .-+ (pl - 1); and therefore 

Finally, there remain the shift tensors with A l a 2  = 0,O. Since the weight 0,O is a 
double weight for the irreducible representation, ( l l ) ,  there must be two independent 
shift operators with A l a 2  = 0,O. The basic relations, equation (33), must lead to 
two independent solutions for the LW shift tensors with A,A2 = 0,O. The simplest 
solution has the form 

1 (PI - TP, - 1 )  3 (PI + iP* - 2,; (U, - 1 )  + (U1 + t + 1); (w1+ 1) - ( U 1  + 1). 

Note that this satisfies equations (33) automatically for both CY = e,- e2 and a = e,. 
Except for sign, this is r (A- l )  so that the first 00-shift tensor, (all weights), can 
be chosen as the VCS realization of the generators. This first 00-shift tensor will be 
denoted by p = 1. Note, however, that equation (34) dictates the following phases 

T(ll):& u u  -1 = -T(A,) 

~ ( 1 1 ) ~ ; ~ ; -  - + r ( w  u:w - -r(ffl) (a) u u  -1 - Tu,uP=' - 
U,Up=l - 

T(ll)+i;im - + r ( A L )  

with normalization factor given by the quadratic Casimir invariant for SO(5), 

( ( (w l~ ) l l (w l t )~ ( l l )U~u~= l l l ) )  = J[w,(wl + 3 )  + i(i + I)] = 1/N1. (85) 

The most general form for the LW 00-shift tensor can be obtained from the linear 
combination, see equation (32), 

- '¶I  ISe1-&, + Se,Se,+(P1,P2) + ~ . , ce ,X(P1 ,Pz) )  (86) 

where the operator functions +(pl ,  p2) and x(pl,p,) are to be determined from the 
basic relation, equation (33). For a = el - ez and a = ez this leads to the two 
relations 

{s2:yse, Se,[4(P1,P2) - - w2 + 1) - +(PI +w, - U 2  + 1, P, - W , + %  - 1)1 

- s,,-,, s:, (U1 - a 2  + 1) [wl- wz - +(PI +U1 - a 2  + 1 t Pz -U1 + w2- 1)1 

+ S c W I I ~ ~ + 1 S e , + e Z [ X ( P l , P 2 )  - (w1 - wz + 1) 

- X ( P 1 + ~ 1 - W z + 1 , P , - w , + w , - 1 ) 1 ~ I L w )  = o  (87) 

w - w *  

t s ,Z~+'s , , s , , [+(P, ,Pz)+(2wz+ 1 ) - + ( P , , P z + 2 w 2 + 1 ) 1  

- X(Pl,P, + 2% + 1)I)ILw) = 0. 

+ ~ ~ ~ + l ~ . , + e , [ x ( P I ~  Pz) - ( 2 9  t l)I(wz + 1) - 4 ( P l ,  P 2  +2w2 t 1)) 

(3 
These have the solution 

#(PI, P d  = -P, + P2 + 2 

x ( P l , p z ) = - ~ [ ( ~ , + ~ 2 ) ~ - 3 ~ l - 5 ~ , I  (90) 

(89) 
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Table 2. F-factors for the coupling (wit) x (11) -+ (w l ,  t t 1). 

t' TL T' 

x { ( w l - t ) ( w l t I ) - ~ ( 2 w l - t + 2 ) }  
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However, this second solution for the 00-shift tensor does not lead to a set of SO(5) 
3 U(2) Wigner coefficients orthogonal to the first, given by unit tensors of type p = 1 
(equations (84) and (85)). lb achieve orthogonality a linear combination of the p = 1 
tensors and the second tensor given through equations (%), (89) and (90) is required. 
That is the Lw component of the p = 2 00-shift tensor can be chosen as 

~(11)y,,~=z = a e - i q i - i n s  i q i - iqa {  s 
e, t c t  + Pe- 

- Se,sez(~l - PZ - 2 )  - t S , , + . , [ ( ~ l +  ~ 2 ) '  - 3 ~ 1 -  5~211 (91) 

where Q and p are determined to make the p = 2 00-shift tensor a unit tensor whose 
reduced matrix elements lead to a set of SO(5) 3 U(2) Wtgner coefficients orthogonal 
to those with p = 1. This can be achieved by letting the tensors with p = 1 and 2 
act on the Lw state so that the arithmetic is relatively simple. The results are 

Q = i N z [ d ( w ,  + 3)' + 6wt(wt t 3)t( t  t 1) t tZ( t  + 1)' t 8t(t  + 1)) (924 

(9%) P = N2[w1(w1 + 3)  + t ( t  + 111 
with normalization factor 

N2 = -NI 
~ t ( t  + wwl + I ) ( ~ ,  - t t + i)(wl + 2 1 ( ~ ,  + 2 - iKwl + 3 + t )  

( 9 2 )  

with NI = Jl/[wl(wl + 3 )  + l(t + I)]. 
This then leads to the p = 2 00-shift tensors given by 

D O  p = 2  - T(ll):l;,m - Nz[ a,,,;tct + 1)[-5w,(w1 + 3) + t ( t  + 1) - 121 
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With one new reduced matrix element 

these lead to the SO(5) 2 U(2) Wigner coelficients given through the F-factors of 
table 3. The SO(5) 3 U(2) Wigner coefficients for the coupling (wit)  x (11) + (wit) 
with p = I is given by the matrix elements of the generators. These are given in very 
explicit form through equations (64)-(67) in [lo]. (Note, however, that the phase of 
equation (66) in [lo] must be changed (replace H ,  by -HI) to be in agreement with 
the phases of equation (84). Also, in table 7 in [lo] change the phase in the first row 
for both the p = 1 and p = 2 columns. In addition, the sign of the thud e n y  of the 
p = 1 column should be changed to a minus sign.) 
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The SO(5) (10) and (11) shift tensors of this section give the SO(5) 3 U(2) 
Wigner coefficients needed to calculate the matrix elements of all pair creation 
and annihilation operators [a t  x at]LTMT, [a  x and all multipole operators 
[at x a],$TvMT. The general two-body operators will lead to SO(5) irreducible 
representations (22), (21) and (20). Shift operators for these irreps can be constructed 
by the build-up process from (11)-tensors (see, e.g., equation (52) of [22]). Multiple 
weight points again lead to multiple shift tensors. The three independent 00-shift 
tensors of the krep (22), e.g., can be built by (i) a coupling of two generators; (E) 
a coupling of a generator with a p = 2 00-shift tensor; and (i) a coupling of two 
p = 2 00-shift tensors. The necessary orthonormalization process is relatively simple 
since it can be carried out by the simple actions of the (11)-tensors on the LW states. 

6. Concluding remarks 

By the explicit introduction of the intrinsic variables q1,q2, and c, the (2f + 1)- 
dimensional intrinsic state of vcs theory can be constructed in very explicit form. 
'Ibgether with the conjugate momenta pl,p2 and a,, the intrinsic SO(5) 2 U(2) 
operators 

91 I 92, PI, P,, c, a, 

z+1. zu, 2-1. a+,.au, 8-1 

can be used together with the collective operators of vcs theory 

to give very explicit constructions of the irreducible tensor operators which induce 
specific shifts Alaz in the irreps (wlw2),  

A ~ A z P  
~ ( W 2 ) h ! 7 7 r L V  

[(T"".(z, a)),, x ( T i " Y % , P i . C ,  a,))&7. 

in terms of vector-coupled combinations of intrinsic and collective tensor operators 
in the form 

In the vector-coupled basis, Iu,p[T, x t ] T M T ) ,  of vcs theory this leads to matrix 
elements expressed trivially in terms of standard angular momentum recoupling 
coefficients and very simple collective-space and intrinsic-space reduced matrix 
elements. The intrinsic space operators can be built up through successive vector- 
couplings of the two basic isospin-; operators, A and B, so that their reduced matrix 
elements are easily calculated. The collective-space reduced matrix elements can be 
expressed in terms of a few SU(3) 3 SO(3) Wigner coefficients which can be given in 
analytic form. In the case of multiple solutions for shift tensors of a specific A l a 2  the 
orthonormal set, characterized by the additional label p. can be constructed through 
their action on the lowest weight state, so that the orthonormalization process is 
relatively simple. 

Very explicit constructions are given for all unit tensors transforming according 
to the irreducible representations (+;) ,( lo),  and (11) of greatest interest in nuclear 
spectroscopy; so that the necessary SO(5) 3 U(2) Wigner coefficients follow simply 
from 

(i) the angular momentum recoupling coefficients of 9j  type; and 
(E) the [{-matrix elements of vcs theory. 
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Table 3. F-faclors for the coupling ( w l t )  x (11) - ( w l t )  wilh p =  2. 

1 
hl r P' F(hlr:TT,;T'T')- 

Nz 

- 1  1 (p-1) 

t T; T' 

! T; T' 
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Table 3. (conlinued) 

+ 1  1 ( P + 1 )  t ( t  + l)((Wl - t ) (w1+  l)(Wl+ t + 1) 

+ $+SWl(Wl+ 3) + t ( t  + 1) - 121) 

f 1)[-5wi(wi + 3) + t [ t  4- 1) - 121 
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